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Abstract 

Program synthesis automatically derives programs from 
specijcations of their behaviol: One advantage of pro- 
gram synthesis, as opposed to manual coding, is that there 
is a direct link between the specification and the derived 
program. This link is, howevel; not veiy $ne-grained: it 
can be best characterized as Program is-derived- 
from Specification. When the generated program 
needs to be understood or modified, more $ne-grained link- 
ing is useful. 

In this papel; we present a novel technique for  automati- 
cally deriving traceability relations between parts of a spec- 
$cation and parts of the synthesized program. The tech- 
nique is very lightweight and works -- with varying de- 
grees of success - for  any process in which one artifact is 
automatically derived from another. 

We illustrate the generality of the technique by apply- 
ing it to two kinds of automatic generation: synthesis of 
Kalman Filter programs from speci3cations using the Aut- 
oFilter program synthesis system, and generation of assem- 
bly language programsfrom C source code using the GCC 
C compilel: We evaluate the effectiveness of the technique 
in the latter application. 

1. Introduction 

One way in which traceability information can be de- 
rived is to augment the program synthesis system so that 
manipulations and calculations it carries out during the syn- 
thesis process are annotated with information on what the 
manipulations and calculations were and why they were 
made. This information is then accumulated throughout the 

synthesis process, at the end of which, every artifact pro- 
duced by the synthesis is annotated with a complete his- 
tory relating it to every other artifact (including the source 
specification) which influenced its construction. This ap- 
proach requires modification of the entire synthesis system 
- which is labor-intensive and hard to do without influenc- 
ing its behavior. 

We describe a lightweight, technique for deriving trace- 
ability from a program specification to the corresponding 
synthesized code. Once a program has been successfully 
synthesized from a specification, small changes are system- 
atically made to the specification and the effects on the syn- 
thesized program observed. The technique builds on work 
first described in [RG]. In this paper we describe how the 
technique has been completely automated, and present an 
evaluation of the results. 

We have applied the technique to one of our program 
synthesis systems, AUTOFILTER, and to the GNU C com- 
piler, GCC. The technique was partially automated for the 
AUTOFILTER application and fully automated for the GCC 
application. The results are promising: 

1. Inspection of the results indicates that in semiauto- 
matic experiments with our synthesis system, most of 
the connections derived from the specification to the 
synthesized code are correct, and around half of the 
lines in the synthesized code can be traced back to at 
least one line of the specification. 

2. In the GCC experiments, 75% of the traceability links 
derived using automatic perturbation involving copy- 
ing were correct. 20-40% of the lines in the gener- 
ated assembler could be correctly traced back to the 
C source program. 

3. Small changes in the source often (especially in the 
GCC examples) induce only small changes in the tar- 



get. 

2. Program Generation and Traceability 

Traceability from requirements through to program code 
provides a rationale for the code. There are many reasons 
why this is desirable, of which some are: 

e It provides an aid to understanding the code. 

e It provides an aid to understanding the requirements. 

e It provides an aid to understanding why the code does 
or does not work correctly. This is particularly impor- 
tant in safety and mission critical applications. 

In practice, traceability can be hard to achieve when 
human programmers are involved. Programmers are reluc- 
tant to maintain documentation, and traceability is easily 
broken if programming artifacts (requirements, design el- 
ements, documents, code etc) are altered without making 
corresponding changes to the other programming artifacts 
which they should affect or be affected by: 

Program synthesis is a technique for automatically deriv- 
ing programs from specifications of their behavior. A good 
specification language enables requirements to be stated in 
a natural way. Program changes can be realized entirely as 
changes to the program’s specification. 

The Automated Software Engineering Group at the 
NASA Ames Research Center has been researching and 
building domain-specific program synthesis systems (re- 
cently, AUTOBAYES [FS02], AUTOFILTER [WVS+Ol] 
and before that AMPHION [LPPU94]). Since program syn- 
thesis systems are in general large and complex, and there- 
fore not necessarily entirely trustworthy, part of our re- 
search has addressed the synthesis of non-code artifacts 
which provide evidence that the synthesized programs cor- 
rectly implement their specifications. In particular, the 
group has been developing: 

e extensible automatic certijication of synthesized pro- 
grams [WSF02, DF031- the synthesis system synthe- 
sizes code annotations along with the program code, 
and these annotations are used to guide a theorem 
prover to prove certain safety properties. 

automatic documentation of synthesized programs 
[WVSfOl] - program documentation is synthe- 
sized at the same time as the program code. 

Traceability information is another kind of non-code in- 
formation which provides evidence of a program’s fitness 
for its task. 

In the following sections we outline two techniques by 
which this traceability information can be automatically de- 
rived. The first technique, which we will call in this paper 
deep traceability, involves augmenting the program synthe- 
sis system (including program schemas and axioms) so that 

calculations carried out by the synthesis system are anno- * 
tated with information on what the calculations were and 
why they were made. We concentrate in this paper on de- 
scribing a second technique, which we call surface trace- 
ability, which is novel and lightweight; once a program has 
been successfully synthesized from a specification, small 
changes are systematically made to the specification and the 
effects on the synthesized program observed. 

A note regarding notation: we call the input to the pro- 
gram generation process the source, and the output the tar- 
get. In the case of a program synthesis system, the source is 
a specification, and the target is a program (C code, for ex- 
ample). In the case of a compiler, the source is a (C) pro- 
gram, and the target is an assembly language program. 

3. Deep Traceability 

A technically sound but heavyweight approach to trac- 
ing from specifications to generated programs involves aug- 
menting the program synthesis system (including program 
schemas and axioms) so that calculations carried out by the 
synthesis system are annotated with information on what 
the calculations were and why they were made. This ap- 
proach was adopted in the Explainlt! extension of AM- 
PHION/NAV [WVS’Ol]. AMPHION/NAV is a purely de- 
ductive synthesis system, which extracts programs from 
proofs carried out in a tableau style theorem prover. The 
proofs can be structured into trees whose nodes are sets of 
formulae, and an edge exists links two nodes if the first 
is derived from the second. Explanations are attached to 
the axioms in AMPHION/NAV’S domain theory, propagated 
along the edges in the derivation tree, and finally incorpo- 
rated into an XML document which links each program 
statement to the axioms and parts of the program specifi- 
cation involved in its construction. 

The approach works well for a purely deductive synthe- 
sis approach but requires extensive modification of the en- 
tire synthesis system. For complex third-party code gener- 
ators, for example a C compiler, the deep traceability ap- 
proach is not practicable. 

In the rest of this document, we describe a new technique 
which can trace complex relationships between source and 
target and requires very little effort to implement. 

4. Surface Traceability 

We discover, automatically, relationships between source 
and target in the following way: first, the synthesis system 
(or compiler) is applied to the source to generate the target. 
We call the original source the nominal source and the cor- 
responding generated target the nominal target. Next, small 
changes (we call them perturbations) are made (one at a 
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time)’ to the source (yielding a perturbed source), and cor- 
responding target programs are synthesized (or compiled) 
from it (resulting in either failure, or in a perturbed target). 
As long as the synthesis process is deterministic, differ- 
ences between the nominal and perturbed target programs 
can only be caused by the differences between the nomi- 
nal and perturbed sources. We therefore associate lines in 
the nominal target program which differ in a perturbed tar- 
get program with the lines in the nominal source which were 
changed by the perturbation. An example will demonstrate 
how the technique works, as well as its flexibility. 

Consider a system which automatically synthesizes En- 
glish sentences from corresponding French specifications. 
For OUT- current purposes, assume that one word of source 
(or target) is written per line of input (or output). Let the 
nominal source be “Ceci n ’est pas une pomrne.” From this 
we synthesize (using an automatic language translator, for 
example) the nominal target, “This is nor an apple.” Apply 
separately the perturbationspomme -+ banane,pas + pipe, 
and une + la, resulting in “This is not a banana.” for the 
first perturbation, an error for the second, and “This is nor 
the apple.” for the third perturbation. We associate the dif- 
ferences between the perturbed and nominal targets with the 
corresponding perturbations, in this case we associate “ap- 
ple” with “pomme” and “an” with “une”. The technique did 
not require any knowledge of English or French, apart from 
the ability to make localized changes in the (French) source 
and detect differences induced in the Pnglish) target. 

The main advantages of the proposed technique are all 
closely related: 

1. It is very lightweight: it is extremely simple to imple- 
ment, and quite effective. In our initial implementation 
($9, perturbations are applied by a line editor, and dif- 
ferences are determined by the Unix di f f ‘program. 

2.  It does not require modification of the synthesis system 
(or compiler). This greatly reduces the effort needed to 
employ it, removes the possibility of inadvertently in- 
troducing errors into the synthesis system when it is 
modified, and makes the technique applicable to third- 
party code generators such as compilers. 

3. It does not require detailed, or indeed any knowledge 
of the internal mechanisms of the synthesis system, 
which is treated as a black box. 

There are of course disadvantages, which we note here: 

1. It cannot identify every part of the source which influ- 
ences the target. 

2. Some small changes in the specification can appear to 
have profound effects when in fact the synthesized pro- 
grams are equivalent. For example, a variable name 
which occurs in many lines of the program might be 
changed. Note that this effect would also appear in a 

deep traceability approach unless measures were taken 
to overcome it, for example by developing a notion of 
a-equivalence (in the sense of the X calculus) for the 
generated programs. 

3. Some changes cannot be made without also making 
other corresponding changes. For example, to discover 
the effect on the target of the name of a function which 
is declared in the source, all lines in the source which 
contain that function name have to be changed simul- 
taneously, or an error will result. We therefore can- 
not discover the effect of function naming with only 
single-line changes to the nominal specification. 

4. It requires careful choice of which perturbations to ap- 
ply to the source specificatiodprogram. We describe 
how this choice can be automated in 37. 

5. Initial Implementation 

Manual experiments indicated that the technique might 
be interesting, so we decided to automate it. The system is 
used as follows: 

0 A list of perturbations is given to the system, expressed 
as commands (the perturbation ed commands) for the 
Unix ed editor. Each perturbation only alters a single 
line in the source. 

0 For each perturbation, a shell script applies the follow- 
ing steps: 

- The perturbation is applied to the nominal speci- 
fication to obtain a perturbed specification. 

- The synthesis system is applied to the perturbed 
specification, either failing, or yielding a per- 
turbed program. 

- If synthesis failed, this is noted in a log file, oth- 
erwise the differences between the perturbed pro- 
gram and the nominal program are computed (us- 
ing Unix di f f - w) and appended to the log file. 

0 Some irrelevant information is removed from the log 
file (leaving for each change the specification line 
changed followed by the ed commands produced by 
dif f which describe the difference (if any) between 
the corresponding perturbed and nominal programs). 

0 A number of emac s macros are used to: 

- Remove differences which only add lines to the 
nominal program - we exclude these since we 
are going to annotate the nominal program with 
the changes and in this case the lines which are 
added do not exist in the nominal program, only 
in the perturbed program. 
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Figure 1: Generation of annotations. Each 2ri is a variant program and the correspondingpi is a set of the line num- 
bers of lines of the differences between vi and the nominal source program. 

- Move perturbations which produced no effect (or 
only changed a date stamp in the generated tar- 
get) into a separate file. 

- For each remaining difference, derive an ed 
command which will append the perturba- 
tion ed commands to the lines in which program 
which they affect. 

These derived ed commands are finally applied to the 
nominal program, yielding the annotated program, in 
which each line may be annotated with one or more 
perturbation ed commands, corresponding to the per- 
turbations which affected that line in the program (as 
judged by that line differing in the perturbed program 
from the nominal program). 

6. Initial Results 

In this section we describe the results of applying our 
technique in two contexts: the AUTOFILTER program syn- 
thesis system, and the GNU GCC compiler. 

6.1. AUTOFILTER 

Initially, the technique was manually applied to an AUT- 
OFILTER specification (a simplified specification of part 
of the Deep Space 1 probe’s attitude control system). The 
specification has 134 lines (of which 44 are non-blank, non- 
comment lines). The nominal program has 362 lines (of 
which 235 are non-blank, non-comment lines). A total of 
37 perturbations were manually applied. 9 led to failed syn- 
thesis attempts, 9 did not lead to any changes in the synthe- 
sized program, 6 changed only temporary variable names in 
the generated code (the programs were @-equivalent), and 
10 reveal interesting relationships between the source and 
target. 

In the first semiautomated experiment, using the same 
specification, 67 perturbations were chosen: 18 led to failed 
synthesis attempts, 19 did not lead to any change in the syn- 
thesized program. The remaining 30 generated annotations 
of the synthesized program. Of these 30, 6 changed many 

lines in the target, changing the number or order of input 
variables to the synthesized code, or the size of its internal 
matrices and vectors. In total, 143 non-blank, non-comment 
lines in the generated code were annotated. 

In the second semiautomated experiment, applied to an 
AUTOFILTER specification for thruster control during au- 
tomated docking (source: 143 non-empty, non-comment 
lines; output: 220 non-blank, non-comment lines), 43 per- 
turbations were applied. 16 led to failed synthesis attempts, 
6 did not lead to any changes in the synthesized program, 
9 led to localized changes, 9 led only to temporary variable 
name changes, and 3 changed many lines in the target. 

Manual inspection of the annotated target programs pro- 
duced in the two semiautomated experiments suggest that 
most of the lines in the synthesized program can be traced 
back to one or more lines in the specification, that the rela- 
tionships identified between specification and synthesis pro- 
gram are correct, as judged by someone who understand 
the meanings of the specifications and the synthesized pro- 
grams. 

We now present a more detailed example. 

6.2. GCC 

In order to demonstrate the flexibility of our technique 
for surface traceability, we applied it to the generation of as- 
sembly language code from C source code. Figure 2 shows 
the source program, and figure 3 shows the annotated as- 
sembly language program which was generated. In order 
to fit space requirements the information has been manually 
edited: only the main section of the generated assembly lan- 
guage code is shown, each perturbation has been written as 
the source code line number to which it applied and a letter, 
listed at the beginning of the assembler line which it traced. 
The perturbations have been shown directly in the source 
program listing. Only perturbations which traced lines in 
the main section of assembler code in figure 3 are shown. 
Others either had no effect, caused an error, or affected a 
part of the assembler code outside the main section. 

. .  .. - . . . . - 
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I The resulting annotated assembly code identifies many 
relationships between it and the C source code. Here is our 
interpretation of some of the results: first, note that most 
perturbations only affect a small number of lines in the gen- 
erated assembler. The exceptions to this are perturbations 
8A and 10E which change many lines of the generated as- 
sembler code (probably because in changing the datatypes 
which represent i and a they affect register allocation and 
memory offsets although we can’t conclude this from our 
experiments - to draw this conclusion probably requires 
some knowledge of assembler and the amount of memory 
needed to store ints versus doubles versus floats). Perturba- 
tion 27H also results in a significant change, possibly for a 
similar reason. Perturbations 16B, 16C, 16R identify those 
parts of the target associated with the head of the for loop. 
Perturbations 34L and 37M trace the call to the exp func- 
tion. Perturbation 30P traces the assignment of the result to 
y. Perturbation 404 traces where y is printed. Perturbation 
16R traces that add instruction to the loop header. Other re- 
lationships between source and target are made evident by 
our experiment: readers are invited to determine these them- 
selves. 

7. Automatic Generation of Perturbations 

7.1. Introduction 

In previous sections we showed how our technique of ap- 
plying perturbations to a source and detecting how those 
perturbations affect the target can be used to anno- 
tate the target with traceability information connect- 
ing some lines of the target program with correspond- 
ing lines of the source. The technique was automatic 
apart from a few steps: calling a few appropriate scripts 
and macros, and specifying the perturbations. Automat- 
ing the first of these is not difficult - it requires writ- 
ing one more script which calls the right scripts at the 
right times. The second is more fundamental in charac- 
ter. In this section we show how perturbations can be 
automatically generated. Derivation of traceability infor- 
mation is then essentially automatic. We apply the tech- 
nique to a simple C program, employing several different 
kinds of perturbation. We evaluate the resulting traceabil- 
ity information in terms of accuracy: what percentage of 
traceability links correctly relate target statements to corre- 
sponding source statements, and coverage: what percentage 
of target statements are correctly related to any source state- 
ment. 

Figure 4 illustrates how the perturbations are generated. 
We outline the steps here and describe them in more detail 
in the following sections. 

Generating slight variants of a given source program 
is not trivial. The simplest automatic approach: randomly 

adding, deleting etc characters and sequences of charac- 
ters from the program is impractical - the vast majority 
of the resulting programs would be syntactically ill-formed. 
Ill-formed programs provide us with no traceability infor- 
mation. If we have a more structured representation of the 
program, however, we can limit the kinds of changes we 
make to those which are likely to produce well-formed pro- 
grams. For this reason, the first step of the automatic per- 
turbation process is to parse the program into a structured 
program representation - in our case the AUTOBAYES In- 
termediate Language is a convenient choice. The result is a 
Prolog term (T,  say). Well-defined C expressions and state- 
ments of different kinds are represented by subterms with 
different functors. For example, an assignment v=e is rep- 
resented by a Prolog term assign(v’, e‘) (where w’, e’ are 
the AUTOBAYES Intermediate Language representations of 
the C expressions v and e respectively). The parsed pro- 
gram T is run through the AUTOBAYES code generator to 
generate the nominal source program. The nominal source 
program may differ in terms of formatting from the original 
source program but should otherwise be functionally iden- 
tical. 

The AUTOBAYES Intermediate Language term T is then 
perturbed in several different ways: by swapping two sub- 
terms of T ,  by copying one subterm of T to another location 
in T ,  by deleting a subterm of T ,  or by a small copy, which 
is a copy restricted to only copying single operators to sin- 
gle operators, or single constants to single constants, or sin- 
gle variables to single variables. Some effort is made to en- 
sure that these operations produce syntactically correct AU- 
TOBAYES Intermediate Language terms. Each of these per- 
turbed versions of T is then run through the AUTOBAYES 
code generator. Each successful code generation yields a 
variant program which differs slightly from the nominal 
source program. The differences (line numbers) are local- 
ized using d i f f  -wand associated with &e variant. 

The end product of this process is a set ( vi, pi ) of vari- 
ant programs vi and associated differences pi (which are 
sets of line numbers). Traceability information can then be 
generated from these using the technique described in $5. 

7.2. Parsing the Source 

A small parser for C was written using a Prolog 
DCG (approximately 200 lines of code including com- 
ments). Programs are parsed into terms in the AUTOBAYES 
Intermediate Language. The grammar suffices for the pur- 
poses of experimentation, but no attempt has been made 
to cover the whole C language. Some limitations are im- 
posed by the AUTOBAYES Intermediate Language. For ex- 
ample, for loops have a restricted form and a limited range 
of data types is supported. Types i n t ,  bool, double, 
void are supported, as scalars, 1- and 2-dimensional ar- 



8 A  int -+ double 

10E double -+ float 

13G 0.5 -+ 1 
14H t + t+l 

#include <stdio.h> 
#include <math.h> 

int main0 

double t, tf, 
x, y ;  
int i; 

{ 

double a = 60, 
b = 0.0782, 
kappa = 1.95, 
c = 0.5; 
tf = 1.0/5.0; 

16B 0 -+ 1 16C < -+ > 16R ++ -+ - -  for( i=O; i < 1 0 0 ;  i++) 

18D t f  -+ t t = i * tf; 
{ 

/ *  
y = a*exp(-b). . . 
x = c*kappa*a*.. 
* /  

25F c + kappa 

27H t + t+l 

291 kappa t c 
30P y -+ x 

325 b + b-l 
33N 1 --f 2 
34L exp -+ log 
35K b --f kappa 

37M exp + log 

404 x -+ kappa 

x = c* 
kappa* 
((l-pow(kappa,t))/ 
(1- 
kappa) ) ; 
y = a* 
exp ( 
-b) * 
( (1- 
exp ( 
-b* 
t))/ 
(l-exp( 
-b) ) ) ; 

Figure 2: The C source code, and a list of the perturbations which applied to the section of assembly language code in figure 3. 
Note that since our technique traces target lines of code to source lines of code, we have split compound statements into multiple 
lines. 

rays. Variables must be declared before the body of 
the program code. Only the following high level con- 
structs are supported: conditionals if . . . then, 
if . . . then . . . else, and loops of the form 
for (<init>, <el> <= <e2>, <V>++) <stmt> 7.3. Generation ofperturbations 
where <init> is an assignment, <el> and <e2> are ex- 

The result of parsing is an AUTOBAYES Intermediate 
Language Prolog term representing the source program. 

Auxiliary predicates getsub( + Term, ?Pos, ?SubTem) 
and setsub(+Term, ?Pos, ?NewSubTerm, ?NewTerm) are de- 

mediate Language terms and subterms. A variant of an 
Intermediate Language term is gener- 

ated as follows: 

pressions (i.e. the loop test must be “less than or equal 
to”), <v> is any C variable and <stmt > is a statement (ei- 

Other limitations exist, for example a part of the gram- 
mar is left recursive causing parsing of some expressions 
not to terminate. 

ther a sing1e statement Or a in { . . 1)- fined for accessing and modifying A U T ~ B A ~ E S  Inter- 
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8A 16B 
8A 
8A 16C 

8A 
18D 

10E 
2 7H 

10E 25F 
1 OE 
8A 13G 

8A 10E 13G 
1 OE 
10E 291 
1 OE 

10E 325 
10E 27H 325 

10E 
10E 35K 
10E 
10E 27H 325 

34L 

10E 
10E 21H 325 

3 7M 

10E 
10E 27H 325 
8A 13G 33N 

10E 

8A 13G 

30P 
8A 10E 13G 33N 
4 OQ 

8A 
16R 8A 
8A 

st %go, [%fp-521 
.LL3: Id [%fp-52], $00 
cmp %oO, 99; ble .LL6 
nop; b .LL4; nop 
.LL6: Id [Zfp-521, %fa; fitod %f4, %f2 
ldd [%fp-32], %f4; fmuld %f2, %f4, %f2 
std %f2, [%fp-24] 
ldd [%fp-80lI %oO 
ldd [%fP-241, %02 
call pow, 0; nop; fmovs %fO, %f4; fmovs %fl, %f5 

ldd [%fp-80], %f6; fmuld %f2, %f6, %f2 
sethi %hi(.LLC5), 801; or %ol, %lo(.LLC5), %oO 
ldd [%oO], %f6; fsubd %f6, %f4, %f4 
sethi %hi(.LLC5), %ol; or %ol, %lo(.LLC5), %oO 
ldd [%003, %f6 

fsubd bf6, %f8, %f6; fdivd %f4, %f6, %f4 
fmuld %f2, %f4, %f2; std %f2, [%fp-40] 

fnegs %f2, %€4; fmovs %f3, %f5; std %f4, [%fp-161 
ldd [%fp-16], %02; rnov %02, 8 0 0 ;  mov $03, %ol; 
call exp, 0 ;  nop 

ldd [%fp-88], %f2 

ldd [%fp-80], %f8 

ldd [%fp-72], %f2 

std %fO, [%fp-96] 
ldd [%fp-72], %f4 
fnegs %f4, %f2; fmovs %f5, %f3; ldd [%fp-24], %f4 
fmuld %f2, %f4, Zf6; std %f6, [%fp-16] 
ldd [%fp-16], %02; mov %02, %oO; mov %03, %ol 
call exp, 0 

noP 
std %fO, [%fp-104]; ldd [%fp-721, %f2 
fnegs %f2, %f8; fmovs %f3, %f9; std %f8, [%fp-161 
ldd [%fp-16], %02; mov %02, %oO; mov %03, %ol 
call exp, 0 
nop; fmovs bfO, %f2; fmovs %fl, %f3 

ldd [bfp-961, %f10; fmuld %f10, %f6, %f4 
sethi %hi ( .LLC5), %ol; or %ol, %lo ( .LLC5) , %oO 
ldd [%001, %f8 

fsubd $f8, %f10, %f6 
sethi %hi(.LLCS), %ol; or %ol, %lo(.LLCS), %oO 
ldd [%oO], %f8; fsubd %f8, %f2, %f2; fdivd %f6, %f2, bf6; 
fmuld %f4, %f6, %f2 

sethi %hi(.LLC6), 001; or %ol, %lo(.LLC6), %oO 

Id [%fp-48], $03; Id [%fp-44], %04; call printf, 0; nop 

add %oO, 1, %ol 
st %ol, [b .LL3 

ldd [%fp-64], %f6 

ldd [%fp-104], bf10 

std %f2, [%fp-481 

Id [%fp-40], %01; Id [%fp-361, %02 

.LL5: Id [%fp-521, %00 

Figure 3: The annotated assembly language code. 
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cy  represent numbers. The input to the perturbation process is a single source C programp. The output is a set of 
pairs ( w, d )  where each w is a variant of p and d a list of the lines which differ betweenp and 21. 

0 Generate a list Ps containing the position of every sub- 
term of T .  Let L be the length of the list Ps. 

0 Generate two random integers I ,  J ,  uniformly dis- 
tributed in the range [0, L) .  From these generate two 
random positions P, Q ,  respectively the I t h  and Jth 
(counting from zero) elements of Ps. Let Tp and TQ 
be the subterms of T at positions P and Q respecively. 

0 If the user has not specified a particular operation to 
be applied, randomly pick one of swap, copy, delete or 

e Perform the following action, depending on the chosen 

- swap - return the term formed by setting posi- 
tion P of T to TQ and position Q of T to Tp, 

- copy - return the term formed by setting posi- 
tion P of T to TQ, 

- small copy - a copy restricted to only copy- 
ing single operators to single operators, or single 
constants to single constants, or single variables 

small copy. 

opera tion : 

Language. It can also generate C++ code suitable for com- 
pilation with a number of different libraries, for example 
Octave and MATLAB. In this application we generate stan- 
dalone C code. 

In order to ensure that the nominal source program and 
the perturbed programs do not differ in formatting or use of 
comments, the AUTOBAYES Intermediate Language term 
T obtained by parsing the original source program is fed 
through the code generator, resulting in a C source file 
which may differ from the original source file in format- 
ting, but is otherwise functionally identical. 

Each variant AUTOBAYES Intermediate Language term 
generated by the perturbation process above is fed in turn 
through the code generator. Usually, some of the variants 
(around 50%) do not conform to legal AUTOBAYES Inter- 
mediate Language syntax and do not correspond to legal C 
programs. The code generator fails to generate code from 
these. The variants which are syntactically valid each pro- 
duce a single C program. 

7.5. Localization of Differences to single variables (e.g. replacing a “+” with a “- 
”, or “1.002” with “-23” or “v” with “kappa”). 

- delete - return the term formed by setting po- 
sition P of T to skip, 0 or true depending on 
whether Tp is a statement, expression or boolean. 

The result of the process is to produce a number of vari- 
ants of the AUTOBAYES Intermediate Language term T .  

7.4. Code Generation 

AUTOBAYES’S code generator back end produces C lan- 
guage files from terms in the AUTOBAYES Intermediate 

In $5,  lines of the nominal target were annotated with 
the perturbation commands, which served both to specify 
both the line number of the perturbation and what substitu- 
tion was applied to derive the perturbation. In the automat- 
ically derived perturbations there is not necessarily a suc- 
cinct way (such as a substitution) to specify exactly how the 
perturbed source was derived from the nominal source. We 
therefore omit that information and only annotate the nomi- 
nal target with the line numbers of lines affected by the cor- 
responding perturbation. These line numbers are derived by 



. , comparing the perturbed C program with the nominal C pro- 
gram using d i  f f - w. 

7.6. Results 

opn 
acc 
cvg 

We applied the automatic perturbation and subsequent 
traceability analysis to a simple C program which contained 
a number of features: two for loops, floating point arith- 
metic, an i f  . . . then  . . . else statement. Fourex- 
periments were carried out using only swaps, only deletes, 
only copies, and only small copies. Two additional experi- 
ments were performed: one employing the copy technique 
with different (automatically generated) perturbations, and 

bations from the original delete experiment excluded. The 
traceability links for the resulting six annotated assembly 
language programs were evaluated according to: 

nm..lr\.r;nn thn doloto terhn;nnp with nnp nf the nc.hlr- 
r -- --- "1,b ~ L l l y ' " , " ' 6  "11 -_*.,.r '"~**.s"l-v .. _ _ _ _  _-_- -- ---- 

0 Accuracy: what percentage of the annotated lines cor- 
rectly linked the nominal target to the corresponding C 
source program statement? 

0 Coverage: what percentage of the lines in the nominal 
target were correctly linked to a line in the source C 
program? 

Where a line in the nominal target is linked to more than 
one line in the nominal source, the linkage is deemed incor- 
rect if any of the links are incorrect. 

The results of the experiments are summarized in the ta- 
ble below. The first row gives the kind of operation per- 
formed, the second and third rows give the accuracy 
and coverage. Figures for accuracy are number of cor- 
rect links/total number of links. Figures for coverage are 
number of correct linkdtotal number of lines in nominal tar- 
get. The additional experiments are labeled copy2 and de12. 
Each experiment accumulated the result of 15-20 perturba- 
tions. 

. 

copy copy2 swap del de12 small 
78/88 45/59 11102 11137 53165 39145 

781179 451179 11179 11179 531179 391179 

Results for the copy operations were good: more than 
75% of the derived traceability links were correct. Results 
for the swap and delete operations were bad. A significant 
reason that the result of the swap operations is so astound- 
ingly poor is that each swap produces two differences be- 
tween the nominal and perturbed source, and each line in the 
nominal target will in general be linked to one of those - 
so one will be wrong, and the link will be deemed incorrect. 

body of the outer for loop, thereby affecting a large num- 
ber of lines in the resulting compiled program and causing 
much of the nominal target program to be annotated with 
every line of that body. When that perturbation is excluded 
(in experiment de12), the results are comparable to those ob- 
tained using copying. 

The results indicate that the automatically generated per- 
turbations using the copy and smallcopy operations are ef- 
fective. The swap operation is not useful for generating 
traceability information. The delete operation may be use- 
ful as long as perturbations which delete large sections of 
code are avoided. 

Coverage may be improved by applying more perturba- 
tions in each experiment. 

8. Related Work 

The most closely related work is in program understand- 
ing, although little work in that area has not been applied to 
automatically generated artifacts. In [CEOl], a technique is 
presented which analyzes assembler code to locate jump ta- 
bles (which arise when compiling case statements). The 
technique is based on slicing and analysis of use of mem- 
ory locations and registers in the code. It may be possible to 
use our shallow traceability technique to locate jump tables. 
In [ACPTOl], traceability links from a design document or 
artifact to its a program which implements it are generated 
by locating similarities between the design and implemen- 
tation. 

9. Applications 

We envisage the following applications of the derived 
traceability information: 

Facilitate understanding of a synthesized program (or 
assembler produced by a compiler, or some other auto- 
matically generated artifact). This is important in cases 
where the user of a synthesis system may not under- 
stand or trust the synthesis process, or when the syn- 
thesized program needs to be manually reviewed or 
edited. 

0 Ensure that requirements are (correctly) implemented. 
Some lines in the specification are not linked to any 
lines in the synthesized program because changing 
them does not affect the synthesized program. If these 
specification lines correspond to parts of important re- 
quirements, then we may have identified a problem. 

- 

The failure to.derive useful information from the first exper- 
iment using delete operations is caused by one of the auto- 
matically generated perturbations, which deletes the entire 

0 Determine the effects of parts of the specification. For 
example, in AUTOFILTER we can specify approxima- 
tions which may be applied to the synthesized program 



(e.g. for efficiency reasons). The traceability informa- 
tion we derive can pinpoint the effects, if any, of these 
approximations. 

10. Further Work 

Our experiments have shown that the proposed technique 
can be automated and can correctly link source lines to re- 
lated target lines. The technique can be accurate but in each 
of our experiments coverage was relatively low, i.e. many 
lines in the generated target could not be traced back to any 
line in the source. It is possible to improve coverage by ac- 
cumulating the results of more perturbations in each anno- 
tated target, but we expect this will accumulate erroneous 
as well as correct links. The figures in our evaluation ta- 
ble might then get worse. One interesting possibility would 
be apply a very large number of perturbations and to gen- 
erate probabilities for each link - a link which is gener- 
ated by 400 different perturbations is more credible than 
one which is generated by 3. Erroneous links may then be 
less of a problem. 

In the AUTOFILTER example, many of the lines in the 
synthesized program were marked as changed merely be- 
cause a variable name had changed. This suggests that a 
more sophisticated way of determining differences, which 
takes account of unimportant changes in variable names (i.e. 
a-equivalence) would be useful. Similarly, in the GCC ex- 
ample, some changes affected a large number of lines in 
the generated assembler code because they changed mem- 
ory addresses or register allocation. 

The annotated target produced by the system is adequate 
for experiments but a better form of output would be useful, 
for example lines in the annotated target could be linked us- 
ing HTh4L to the lines in the source which affected them or 
presented in the form of a traceability matrix. 

The technique needs to be evaluated on more complex 
programs and specifications. 

11. Conclusions 

The technique we have presented, though extremely sim- 
ple, has the power to discover relationships between source 
and target which would otherwise require detailed knowl- 
edge of source and target languages, the meaning of the 
source and target programs, or the program generation 
(compilation) mechanism itself. We successfully leverage 
the automation of the code generation (or compilation) pro- 
cess, which is an essential component of the technique. 

The results are promising: 

1. Inspection of the results indicates that in semiauto- 
matic experiments with our synthesis system, most of 
the connections derived from the specification to the 
synthesized code are correct, and around half of the 

lines in the synthesized code can be traced back to at . 
least one line of the specification. 

2.  In the case of compilation, 75% of the traceability links 
derived using automatic perturbation involving copy- 
ing were correct. 20-40% of the lines in the gener- 
ated assembler could be correctly traced back to the 
C source program. Perturbations generated by swap- 
ping or deleting did not generate any useful traceabil- 
ity links. 

3. Small changes in the source often (especially in the 
GCC examples) induce small changes in the target. 
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